Устройство системы зажигания карбюраторного двигателя

Устройство системы зажигания карбюраторного двигателя

Рассмотрим принцип действия бесконтактной системы зажигания на примере системы зажигания автомобилей ВАЗ 2108, 2109, 21099. Определим, откуда берется искра для поджига топливной смеси в камере сгорания и почему она проскакивает своевременно для каждого цилиндра.

Бесконтактная система зажигания автомобилей ВАЗ 2108, 2109, 21099 включает в себя катушку зажигания, свечи зажигания, высоковольтные провода (бронепровода), трамблер с распределителем зажигания, датчиками-регуляторами опережения зажигания (центробежным и вакуумным) и датчиком Холла, также коммутатор и провода низкого напряжения.

Схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

Откуда поступает ток в систему зажигания?

Электрический ток в систему зажигания поступает с вывода «30» генератора, через монтажный блок предохранителей и реле, замок зажигания, реле зажигания и далее на вывод «Б» катушки зажигания. Система запитывается после поворота ключа в замке зажигания.

Принцип действия бесконтактной системы зажигания

— При работе двигателя вращается вал распределителя зажигания (трамблера). В работу вступает датчик Холла. Стальной круглый экран с четырьмя прорезями на валу трамблера, вращаясь, проходит через зазор этого датчика. Когда проходит прорезь экрана, напряжение отдаваемое датчиком ниже бортового на 3 В или равно ему, когда зубец экрана, напряжение падает практически до нуля. Прохождение каждого из четырех зубцов соответствует такту сжатия и моменту зажигания в одном из цилиндров двигателя.

— Далее в работу вступает коммутатор. Свои прерывистые импульсы датчик Холла подает на вывод «6» коммутатора, а тот в свою очередь подает импульс на первичную обмотку катушки зажигания (вывод «К»).

— Теперь работает катушка зажигания. В момент прерывания электрического тока (зубец экрана проходит через зазор датчика Холла) магнитное поле в катушке зажигания резко сжимается и, пересекая витки обмотки, производит ЭДС порядка 22-25 кВ (ток высокого напряжения).

— Работа распределителя зажигания. Ток высокого напряжения по центральному бронепроводу поступает на центральный вывод крышки трамблера и далее на «бегунок»-распределитель зажигания, который вращаясь, раздает ток высокого напряжения по четырем клеммам крышки.

— Работа свечей зажигания. По высоковольтным проводам ток высокого напряжения поступает к свечам зажигания. Между их электродами проскакивает искра, воспламеняющая топливную смесь в цилиндрах двигателя.

Чтобы добиться от двигателя максимальной мощности необходимо воспламенять смесь искрой несколько раньше прихода поршня в верхнюю мертвую точку (ВМТ). Для этого регулируют угол опережения зажигания вращением трамблера в ту или иную сторону. При холостых оборотах двигателя 750-800 об/мин угол опережения зажигания, например для двигателя 21083 работающего на 92-м бензине должен составлять 4±1º (подробнее см. «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099»).

Примечания и дополнения

— При работе двигателя на высоких оборотах необходим еще более ранний угол опережения зажигания. Здесь помогает центробежный регулятор опережения зажигания, который за счет расхождения своих грузиков от центробежной силы при повышении оборотов вращения оси трамблера смещает пластину с экраном. Она раньше проходит через зазор в датчике Холла, импульс поступает на коммутатор с некоторым опережением и соответственно зажигание становится раньше (подробнее см. «Центробежный регулятор опережения зажигания»).

работа центробежного регулятора опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

— При движении с нагрузкой (например, в гору) помогает вакуумный регулятор опережения зажигания. Он работает по такому же принципу, как и центробежный регулятор. Смещает пластину с экраном для опережения угла, но за счет разрежения возникающего за дроссельной заслонкой после нажатия на педаль «газа» (подробнее см. «Вакуумный регулятор опережения зажигания»).

вакуумный регулятор опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

Еще статьи по системе зажигания

Разновидности систем зажигания

Благодаря системе зажигания авто в определенный момент работы двигателя производится подача на свечи зажигания искрового разряда. Данная схема системы зажигания применяется в бензиновых моторах. В дизельных двигателях система зажигания работает следующим образом, в момент сжатия происходит впрыск топлива. Существуют некоторые марки американских автомобилей, в которых система зажигания, а точнее ее импульсы подаются непосредственно в блок управления погружаемым топливным насосом.

Все существующие системы зажигания разделяются на три вида:

  • Контактная схема, в которой импульсы создаются непосредственно во время работы на разрыв контактов;
  • Бесконтактная схема, где при помощи электронно-транзисторного устройства (коммутатора) создаются управляющие импульсы. Коммутатор нередко еще называют генератором импульсов.
  • Микропроцессорная схема, в которой электронное устройство управляет моментом зажигания.

В двухтактных двигателях без внешнего источника питания применяется система зажигания типа «магнето». Принцип работы «магнето» заключается в создании ЭДС, в момент вращения в катушке зажигания постоянного магнита по заднему фронту импульса.

Все описанные типы систем зажигания отличаются только способом создания управляющего импульса.

Устройство системы зажигания

На рисунке представлена система зажигания, которая применяется в бензиновых автомобилях.

Рассмотрим более подробно устройство и схему системы зажигания авто.

  • источник питания (аккумуляторная батарея и автомобильный генератор);
  • накопитель энергии;
  • выключатель зажигания;
  • блок управления накоплением энергии (микропроцессорный блок управления, прерыватель, транзисторный коммутатор);
  • блок распределения энергии по цилиндрам (электронный блок управления, механический распределитель);
  • свечи зажигания;
  • высоковольтные провода.

Источником питания для системы зажигания выступает аккумуляторная батарея непосредственно в момент запуска мотора, и генератор во время работы двигателя.

Накопитель применяется для аккумуляции и преобразования достаточного количества энергии, которая используется на создание электрического разряда в электродах свечи зажигания. Современная система зажигания автомобиля может применять емкостной или индуктивный накопитель.

Индуктивный накопитель представляет собой катушку зажигания (автотрансформатор), первичная обмотка у которой, подключается к полюсу плюсовому, а минусовой полюс подключается через устройство разрыва. В процессе работы устройства разрыва, возьмем для примера кулачки зажигания, в первичной обмотке наводится напряжение самоиндукции. В это время во вторичной обмотке создается повышенное напряжение, необходимое для пробоя на свече воздушного зазора.

Читайте также:  Прокладка клапанной крышки митсубиси лансер 9

Емкостной накопитель представлен в виде емкости, которая заряжается при помощи повышенного напряжения. В нужный момент отдает всю энергию на свечу зажигания.

Блок управления накоплением энергии предназначен для определения начального момента накопления энергии, а также момента его передачи на свечу зажигания.

Выключатель зажигания – электрический или механический контактный блок для подачи в систему зажигания напряжения. Выключатель зажигания многим автомобилистам известен, как «замок зажигания». Ему отводится две функции: подача напряжения непосредственно на втягивающее реле стартера и подача напряжения в бортовую сеть автомобиля.

Устройство распределения по цилиндрам применяется для подачи в определенный момент энергии к свечам зажигания от накопителя. Данный элемент системы зажигания двигателя состоит из блока управления, коммутатора и распределителя.

Автомобилистам наиболее известно это устройство, как «трамблер», который является распределителем зажигания. Трамблер распределяет по проводам высокое напряжение на свечи цилиндров. Как правило, в распределителе присутствует кулачковый механизм.

Свеча зажигания – устройство с двумя электродами, которые находятся друг от друга на определенном расстоянии от 0.15 до 0,25 мм. Свеча состоит из фарфорового изолятора, который плотно насажен на металлическую резьбу, электродом служит центральный проводник, а вторым электродом выступает резьба.

Высоковольтные провода представляют собой одножильные кабеля с усиленной изоляцией. Проводник может быть выполнен в виде спирали, что поможет избавиться от помех в радиодиапазоне.

Принцип работы системы зажигания

Разделим работу системы зажигания на следующие этапы:

  • аккумуляция электрической энергии;
  • трансформация (преобразование) энергии;
  • разделение по свечам зажигания энергии;
  • образование искры;
  • разжигание топливно-воздушной смеси.

На примере классической системы зажигания рассмотрим принцип работы. В процессе вращения вала привода трамблера приводятся в действие кулачки, подаваемые на обмотку первичную автотрансформатора напряжение 12 вольт.

В момент подачи напряжения на трансформатор, наводится ЭДС самоиндукции в обмотке и вследствие этого, возникает высокое напряжение до 30000 вольт на вторичной обмотке. После чего в распределитель зажигания (бегунок) подается высокое напряжение, который в момент вращения подает напряжение на свечи. 30000 вольт достаточно, чтобы пробить воздушный зазор свечи искровым зарядом.

Система зажигания автомобиля должна быть идеально отрегулирована. Если будет позднее или раннее зажигание, то двигатель внутреннего сгорания может потерять свою мощность или появится повышенная детонация, а это очень не понравится вашей шестерке (ВАЗ 2106).

  • Принцип работы системы зажигания
  • 1. Особенности системы зажигания
  • 2. Устройство системы зажигания
  • 3. Как работает система зажигания?

Одним из основных условий успешного запуска двигателя есть наличие исправной системы зажигания, отвечающей за воспламенение топливовоздушной смеси путем искрообразования в нужном цилиндре силового агрегата. Учитывая всю важность указанной системы, знание ее устройства и принципов работы пригодится любому автолюбителю, чтобы в случае необходимости можно было самостоятельно устранить возникшую неисправность.

1. Особенности системы зажигания

Основными требованиями, которые обычно предъявляются к системе зажигания, есть:

1. Необходимость образования искры в цилиндре (находящемся на такте сжатия) соответственно общему порядку работы цилиндров;

2. Обеспечение своевременного момента зажигания, то есть искра должна появляться в конкретный момент, который соответствует оптимальному углу его опережения (при текущих рабочих условиях мотора) и зависит как от оборотов двигателя, так и от нагрузки на него;

3. Снабжение искры достаточной энергией, то есть тем ее количеством, которое необходимо для возгорания рабочей смеси (на этот показатель оказывает влияние состав, плотность и температура рабочей смеси);

4. Рабочая надежность, выражающаяся в непрерывном искрообразовании.

В первичных обмотках зажигания, управление током осуществляется с помощью специального контроллера, который получает информационные данные от соответствующих датчиков. Положительной особенностью системы зажигания есть отсутствие в ней подвижных деталей, благодаря чему она не нуждается в постоянном обслуживании или регулировках, а в рабочих целях используется метод распределения искры, который еще часто именуют «методом холостой искры». Цилиндры силового агрегата объединены в пары – 1 с 4, а 2 с 3, причем образование искр проходит сразу в двух цилиндрах: в том, где заканчивается такт сжатия, и в том, где проходит такт выпуска.

Учитывая, что ток в обмотках катушек имеет постоянное направление, образование искры на одной свече всегда проходит от центрального электрода на боковой, а на второй – наоборот, от бокового на центральный. Процесс управления зажиганием выполняется специальным контролером. Датчик положения коленвала передает ему некий опорный сигнал, исходя из которого, контроллер проводит расчет последовательности срабатывания катушек модуля зажигания, а для того чтобы управление было точным, устройству нужна следующая информация:

— частота вращения коленвала силового агрегата;

— нагрузка, которую испытывает мотор автомобиля;

— температура охлаждающей жидкости системы;

2. Устройство системы зажигания

Несмотря на некоторое конструктивное различие разных систем зажигания, можно выделить следующие, общие элементы всех устройств:

1. Источник питания – бортовая сеть автомобиля, вместе со своими источниками, представленными в виде аккумуляторной батареи и генератора;

2. Выключатель зажигания;

3. Устройство, отвечающее за управление накопителем энергии. В его задачу входит определение момента начала накопления и момента передачи энергии на свечу зажигания, то есть определение самого момента зажигания. Исходя из конструктивных особенностей системы зажигания конкретного автомобиля, данное устройство может иметь разный вид.

Читайте также:  Что нужно для покупки осаго

Механический прерыватель – осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки. Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту. Их размыкание выполняется только на короткий срок, а конкретно в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.

Параллельно контактам включен и конденсатор, который предотвращает их обгорание в момент размыкания. Это стало возможным благодаря поглощению большей части электроразряда, из-за чего существенно уменьшается искрение. Однако, это еще не все полезное влияние конденсатора. Вторая половина преимущества его присутствия базируется на создании в цепи низкого напряжения обратного тока, что положительно влияет на скорость исчезновения магнитного поля. Чем быстрее это произойдет, тем больший ток появится в цепи высокого напряжения. Если конденсатор выйдет из строя – мотор не сможет нормально работать, ведь силы напряжения во вторичной цепи не хватит, чтобы обеспечить стабильное искрообразование.

Прерыватель находится в том же корпусе, что и распределитель высокого напряжения, из-за чего последний получил название прерывателя-распределителя, а саму систему стали называть «классической системой зажигания».

Вместе с прерывателем-распределителем в корпусе находится еще одна важная деталь — центробежный регулятор опережения зажигания, использующийся с целью изменения момента образования искры в соответствии со скоростью вращения коленвала. Менять момент возникновения искры между электродами свечей способен и вакуумный регулятор опережения зажигания, только он делает это в зависимости от нагрузки на мотор автомобиля.

Если механический прерыватель оборудован транзисторным коммутатором, то в этом случае он управляет только ним, а тот, в свою очередь, отвечает за управление процессом накопления энергии. Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается. Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием — «контактные системы зажигания».

Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу. В данном случае место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который посредством транзисторного коммутатора осуществляет управление накопителем энергии. Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».

Одна из вариаций такой системы, оборудованная распределителем механического вида и катушкой зажигания, размещенной отдельно от распределителя и коммутатора, называется «бесконтактной системой зажигания». Конечно, существует много ее вариантов, предусматривающих применение одного или нескольких соответствующих датчиков.

Также, на основе управления зажиганием выделяют еще один вариант систем – микропроцессорные системы зажигания, которые оборудованы микропроцессорным блоком зажигания (или блоком управления работой мотора с подсистемой управления зажигания), а также имеют датчики и коммутатор. В таком случае, блок управления получает данные о работе силового агрегата (количестве оборотов, положении коленвала, положении распредвала, нагрузках на мотор и температуре охлаждающей жидкости) от датчиков, и уже исходя из результатов их алгоритмической обработки, осуществляет управление коммутатором, который, в свою очередь, управляет накопителем энергии. Процесс регулировки опережения зажигания реализован в блоке управления программно.

В системе зажигания электронного типа, в роли устройства управления накопителем энергии, выступает электронный блок управления (ЭБУ), который является главной составной частью такой системы. Его работа базируется на сборе информации, получаемой от различных датчиков (положения коленвала, положения распредвала, датчика детонации, датчика угла открытия дросселя), на расчете оптимального момента зажигания и времени зарядки катушки, а также через коммутатор – он отвечает за управление первичной цепью катушки.

На выпускаемых сегодня автомобилях блок управления зажиганием объединен с блоком, отвечающим за впрыск топлива.

4. Накопители энергии, которые, в зависимости от типа системы, могут разделяться на две группы:

— С накоплением энергии в катушке (катушках) зажигания, где энергия собирается в первичной обмотке, а при размыкании первичной цепи, во вторичной образуется высокое напряжение, подающееся впоследствии на свечи зажигания. Такой вариант системы есть наиболее распространенным.

— С накоплением энергии в конденсаторе, после чего, в нужный момент, она проходит через катушку зажигания. Во второй цепи также проходит индуцирование высокого напряжения, которое позже подается на свечи. Устройство накопителя энергии такого типа часто называют «зажиганием от разряда конденсатора» или «конденсаторным зажиганием», обозначая аббревиатурой CDI (Capacitor Discharge Ignition). Такая система хоть и не часто, но встречается на автомобилях, правда большее распространение она получила на мотоциклах, гидроциклах и скутерах. Ее главная отличительная черта в том, что энергия искры не зависит от оборотов мотора.

5. Система распределения зажигания. На транспортных средствах может применяться один из двух типов такой системы: система оборудована механическим распределителем или же система статистического распределения.

— Системы, обладающие механическим распределителем энергии, как правило, работают посредством трамблера, который и распределяет напряжение по свечам цилиндров силового агрегата. В системах зажигания контактного типа он, зачастую, объединен с прерывателем, а в бесконтактных – с импульсным датчиком. В более модернизированных системах трамблер либо вообще отсутствует, либо совмещен с катушкой зажигания, коммутатором и датчиками различных систем (CID, HEI, CIC).

Читайте также:  Для чего нужны направляющие на гбц

— Системы, основывающиеся на статическом распределении энергии, пришли на смену классическому распределителю. Они получили свое название из-за того, что у них отсутствуют движущиеся части, которые обычно входят в конструкцию распределителя. Системы такого рода обозначают аббревиатурой DLI (DistributorLess Ignition) и DIS (DistributorLess Ignition System), что означает "система без распределителя", и DI (Direct Ignition), подразумевающие "систему прямого, или непосредственного зажигания". DLI – имеет отношение ко всем системам без высоковольтного распределителя; DI — относится только к тем, в которых присутствуют индивидуальные катушки, а DIS – это системы синхронного зажигания, обладающие двухвыводными катушками. Возможно, такой подход и не совсем верный, но именно он чаще всего употребляется.

6. Высоковольтные провода. Выступают в роли соединительного элемента между накопителем энергии и ее распределителем (или свечами), а также соединяют распределитель со свечами зажигания. В системах зажигания типа COP («катушка на свече») данный элемент отсутствует.

7. Свечи зажигания. Применяются с целью создания искрового разряда и последующего воспламенения рабочей смеси, находящейся в камере сгорания. Свечи зажигания располагаются в головке цилиндра, и как только на них попадает импульс тока высокого напряжения, между их электродами тут же проскакивает искра, воспламеняющая рабочую смесь.

На большинстве транспортных средств обычно установлено по одной свече в каждый цилиндр, но иногда встречаются и более сложные системы, обладающие двумя свечами, причем они не всегда срабатывают одновременно. Например, при малых оборотах двигателя сначала срабатывает та свеча, которая находится ближе к впускному клапану, а за ней уже вторая, которая обеспечивает более быстрое и полное сгорание топливовоздушной смеси.

3. Как работает система зажигания?

Несмотря на то, к какому типу относится та или иная система зажигания, все они имеют несколько общих рабочих этапов, предусматривающих накопление нужного заряда, его высоковольтное преобразование, распределение, образование на свечах искр и возгорание топливной смеси. Любой из них требует слаженной и точной работы, а значит, стоит выбирать только проверенные устройства, доказавшие свою надежность. В этом плане наилучшим вариантом принято считать электронную систему зажигания, где всем рабочим процессом (подачей искры и ее распределением по свечам) управляет электроника.

Электронная система зажигания – это не отдельный, самостоятельный компонент, а составляющая часть системы управления мотором, которая основывается на работе датчика положения коленвала, датчика, фиксирующего частоту его вращения и датчика массового расхода воздуха. Получив от них нужную информацию, ЭБУ принимает решение касательно момента подачи искры и распределения зажигания. Естественно, в блоке управления уже прописаны определенные команды, выполняющиеся после получения и анализа данных с упомянутых датчиков.

В такой системе воспламенения топливной смеси, полностью исключены механические движущиеся части, а благодаря специальным датчикам и особому блоку управления, образование и подача искры проходят намного быстрее и надежнее, нежели у аналогичных систем контактного и бесконтактного типа. Этот факт позволяет улучшить работу мотора, увеличив его мощность и снизив потребление топлива. Более того, нельзя не отметить высокую рабочую надежность устройств данного типа.

Бесконтактное зажигание отличается тем, что не зависит напрямую от размыкания контактов, а главную роль в процессе образования искры здесь выполняет транзисторный коммутатор и специальный датчик. Отсутствие прямой зависимости от качества и чистоты поверхности контактной группы гарантирует более эффективное искрообразование. Однако, как и в контактном варианте системы зажигания, здесь также используется прерыватель-распределитель, отвечающий за своевременную передачу тока на свечу зажигания. Рабочий принцип бесконтактной системы предусматривает выполнение следующих действий.

Когда коленвал двигателя приходит в движение, датчик-распределитель формирует соответствующие импульсы напряжения и направляет их на транзисторный коммутатор, задача которого – создавать импульсы тока в первичной обмотке катушки зажигания. В момент прерывания во вторичной обмотке катушки проходит индуцирование тока высокого напряжения. Он подается на центральный контакт распределителя, а оттуда, посредством проводов высокого напряжения, поступает на свечи зажигания. Последние и осуществляют воспламенение топливовоздушной смеси.

В случае увеличения оборотов коленвала, за регулировку угла опережения зажигания отвечает центробежный регулятор, а при изменении нагрузки на силовой агрегат эта задача возлагается на вакуумный регулятор опережения зажигания.

Принцип работы контактного зажигания несколько отличается от вариантов, приведенных выше. Когда контакт прерывателя пребывает в замкнутом состоянии, ток низкого напряжения проходит по первичной обмотке катушки. В процессе их размыкания, во второй катушке происходит индуцирование тока высокого напряжения, и посредством высоковольтных проводов он передается на крышку распределителя, после чего расходится по свечам зажигания с определенным углом опережения зажигания.

Как только обороты коленвала увеличиваются, возрастают и обороты вала прерывателя-распределителя, вследствие чего грузики центробежного регулятора начинают расходиться, перемещая подвижную пластину вместе с кулачками прерывателя. Это приводит к тому, что размыкание контактов происходит несколько раньше, из-за чего увеличивается угол опережения зажигания. С уменьшением оборотов коленвала угол опережения зажигания тоже уменьшается.

Более модернизированным типом контактной системы является ее контактно-транзисторный вариант. Он отличается наличием транзисторного коммутатора в цепи первичной обмотки катушки, управление которым выполняется посредством контактов прерывателя. За счет его использования, удалось добиться снижения силы тока в цепи первичной обмотки, что положительно сказалось на длительности эксплуатации контактов прерывателя.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Ссылка на основную публикацию
Adblock detector